Image denoising with recurrent polak-ribière-polyak conjugate gradient-based neuro-fuzzy edge-preserving segmentation based on OAMNHA

0Citations
Citations of this article
1Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The most essential process in image processing applications is eliminating the noisy pixels from the images and acquiring the noise-free images with better reconstructed quality. This process has high complexity due to the segmentation of image patches from the noisy images. To simplify this process, Neuro-Fuzzy filtering with Optimum Adaptive parameterized Mask Non-Harmonic Analysis in Curvelet Transform domain (NF-OAMNHA-CT) has been proposed for image denoising. It uses NF edge detector instead of canny edge detector for segmenting and preserving the edge regions including homogeneous texture boundaries with minimized edge distortion. However, it requires gradient information about the error function with respect to the parameter measures during training of NF for optimizing their parameters. Also, it often affects with the fixed local minima. Therefore in this article, Recurrent Polak-Ribière-Polyak Conjugate Gradient-Based Neuro-Fuzzy (RPCGNF-OAMNHA-CT) technique is proposed to enhance the edge-preserving segmentation in image denoising. At first, the noisy images are defined in the CT domain and fed to the RPCGNF edge detector as edge-preserving segmentation that segments and extracts the edge regions as well as homogeneous texture regions. In this RPCGNF technique, recurrent mechanism is applied to construct PCGNF as an updated edge-preserving segmentation technique that learns their parameters with high efficiency and speeding up the convergence. As a result, the edge regions and homogeneous textures are synchronously segmented as noisy pixels until either the PCGNF converges to the desired accuracy of segmentation or a termination criterion is reached. Further, OAMNHA is applied on each segment to remove the noisy pixels from the images and obtain the noise-free images accurately. Finally, the experimental results illustrate the proposed RPCGNF-OAMNHA-CT technique achieves higher efficiency than the NF-OAMNHA-CT technique in terms of Peak Signal-to-Noise Ratio (PSNR), Mean Absolute Error (MAE) and Structural Similarity (SSIM).

Cite

CITATION STYLE

APA

Indupriya, K., & Vijendran, A. S. (2019). Image denoising with recurrent polak-ribière-polyak conjugate gradient-based neuro-fuzzy edge-preserving segmentation based on OAMNHA. International Journal of Innovative Technology and Exploring Engineering, 9(1), 270–276. https://doi.org/10.35940/ijitee.A4018.119119

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free