We report the fabrication of individually addressable, high-density, vertical zinc oxide (ZnO) nanotube pressure sensor arrays. High-sensitivity and flexible piezoelectric sensors were fabricated using dimension- and position-controlled, vertical, and free-standing ZnO nanotubes on a graphene substrate. Significant pressure/force responses were achieved from small devices composed of only single, 3 × 3, 5 × 5, and 250 × 250 ZnO nanotube arrays on graphene. An individually addressable pixel matrix was fabricated by arranging the top and bottom electrodes of the sensors in a crossbar configuration. We investigated the uniformity and robustness of pressure/force spatial mapping by considering the pixel size, the number of ZnO nanotubes in each pixel, and the lateral dimensions of individual ZnO nanotubes. A spatial resolution as high as 1058 dpi was achieved for a Schottky diode-based force/pressure sensor composed of ZnO nanotubes on a flexible substrate. Additionally, we confirmed the excellent flexibility and electrical robustness of the free-standing sensor arrays for high-resolution tactile imaging. We believe that this work opens important opportunities for 1D piezoelectric pressure/force sensor arrays with enormous applications in human-electronics interfaces, smart skin, and micro- and nanoelectromechanical systems.
CITATION STYLE
Park, J., Ghosh, R., Song, M. S., Hwang, Y., Tchoe, Y., Saroj, R. K., … Yi, G. C. (2022). Individually addressable and flexible pressure sensor matrixes with ZnO nanotube arrays on graphene. NPG Asia Materials, 14(1). https://doi.org/10.1038/s41427-022-00386-4
Mendeley helps you to discover research relevant for your work.