Exposed high-energy facets in ultradispersed sub-10 nm SnO2 nanocrystals anchored on graphene for pseudocapacitive sodium storage and high-performance quasi-solid-state sodium-ion capacitors

52Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The development of sodium (Na) ion capacitors marks the beginning of a new era in the field of electrochemical capacitors with high-energy densities and low costs. However, most reported negative electrode materials for Na+ storage are based on slow diffusion-controlled intercalation/conversion/alloying processes, which are not favorable for application in electrochemical capacitors. Currently, it remains a significant challenge to develop suitable negative electrode materials that exhibit pseudocapacitive Na+ storage for Na ion capacitors. Herein, surface-controlled redox reaction-based pseudocapacitance is demonstrated in ultradispersed sub-10 nm SnO2 nanocrystals anchored on graphene, and this material is further utilized as a fascinating negative electrode material in a quasi-solid-state Na ion capacitor. The SnO2 nanocrystals possess a small size of <10 nm with exposed highly reactive {221} facets and exhibit pseudocapacitive Na+ storage behavior. This work will enrich the methods for developing electrode materials with surface-dominated redox reactions (or pseudocapacitive Na+ storage).

Cite

CITATION STYLE

APA

Zhang, P., Zhao, X., Liu, Z., Wang, F., Huang, Y., Li, H., … Huang, W. (2018). Exposed high-energy facets in ultradispersed sub-10 nm SnO2 nanocrystals anchored on graphene for pseudocapacitive sodium storage and high-performance quasi-solid-state sodium-ion capacitors. NPG Asia Materials, 10(5), 429–440. https://doi.org/10.1038/s41427-018-0049-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free