A Drosophila laboratory evolution experiment points to low evolutionary potential under increased temperatures likely to be experienced in the future

73Citations
Citations of this article
151Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The ability to respond evolutionarily to increasing temperatures is important for survival of ectotherms in a changing climate. Recent studies suggest that upper thermal limits may be evolutionary constrained. We address this hypothesis in a laboratory evolution experiment, encompassing ecologically relevant thermal regimes. To examine the potential for species to respond to climate change, we exposed replicate populations of Drosophila melanogaster to increasing temperatures (0.3 °C every generation) for 20 generations, whereas corresponding replicate control populations were held at benign thermal conditions throughout the experiment. We hypothesized that replicate populations exposed to increasing temperatures would show increased resistance to warm and dry environments compared with replicate control populations. Contrasting replicate populations held at the two thermal regimes showed (i) an increase in desiccation resistance and a decline in heat knock-down resistance in replicate populations exposed to increasing temperatures, (ii) similar egg-to-adult viability and fecundity in replicate populations from the two thermal regimes, when assessed at high stressful temperatures and (iii) no difference in nucleotide diversity between thermal regimes. The limited scope for adaptive evolutionary responses shown in this study highlights the challenges faced by ectotherms under climate change. © 2014 European Society For Evolutionary Biology.

Cite

CITATION STYLE

APA

Schou, M. F., Kristensen, T. N., Kellermann, V., Schlötterer, C., & Loeschcke, V. (2014). A Drosophila laboratory evolution experiment points to low evolutionary potential under increased temperatures likely to be experienced in the future. Journal of Evolutionary Biology, 27(9), 1859–1868. https://doi.org/10.1111/jeb.12436

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free