Abstract
We prove that for a complex number a a with Re β‘ a 2 > β Ο 2 / 4 \operatorname {Re} {a^2} > - {\pi ^2}/4 and x ( β ) β L 2 [ 0 , 1 ] x( \cdot ) \in {L^2}[0,1] , \[ E W { exp β‘ ( β 2 β 1 a 2 | | x + y | | 2 2 ) } = ( cosh β‘ a ) β 1 / 2 exp β‘ [ 2 β 1 ( β« 0 1 β« 0 1 k ( s , t ) x ( s ) x ( t ) d s d t β a 2 β« 0 1 x 2 ( t ) d t ) ] , {E_W}\{ \exp ( - {2^{ - 1}}{a^2}||x + y||_2^2)\} = {(\cosh a)^{ - 1/2}}\exp \left [ {{2^{ - 1}}\left ( {\int _0^1 {\int _0^1 {k(s,t)x(s)x(t)dsdt} - {a^2}\int _0^1 {{x^2}(t)dt} } } \right )} \right ], \] , where W W , the standard Wiener measure on C [ 0 , 1 ] C[0,1] , is the distribution of y y and \[ k ( s , t ) = a 3 ( 2 cosh β‘ a ) β 1 [ sinh β‘ ( a ( 1 β | s β t | ) ) β sinh β‘ ( a ( 1 β | s + t | ) ) ] . k(s,t) = {a^3}{(2\cosh a)^{ - 1}}[\sinh (a(1 - |s - t|)) - \sinh (a(1 - |s + t|))]. \] .
Cite
CITATION STYLE
Chiang, T.-S., Chow, Y. S., & Lee, Y.-J. (1987). A formula for πΈ_{π}ππ₯π(-2β1π2βπ₯+π¦β2β). Proceedings of the American Mathematical Society, 100(4), 721β724. https://doi.org/10.1090/s0002-9939-1987-0894444-5
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.