Real-time sound synthesis of pass-by noise: comparison of spherical harmonics and time-varying filters

2Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

This paper proposes and compares two sound synthesis techniques to render a moving source for a fixed receiver position based on indoor pass-by noise measurements. The approaches are based on the time-varying infinite impulse response (IIR) filtering and spherical harmonics (SH) representation. The central contribution of the work is a framework for realistic moving source sound synthesis based on transfer functions measured using static far-field microphone arrays. While the SHs require a circular microphone array and a free-field propagation (delay, geometric spread), the IIR filtering relies on far-field microphones that correspond to the propagation path of the moving source. Both frameworks aim to provide accurate sound pressure levels in the far-field that comply with standards. Moreover, the frameworks can be extended to additional sources and filters (e.g. sound barriers) to create different moving source scenarios by removing the room size constraint. The results of the two sound synthesis approaches are preliminary evaluated and compared on a vehicle pass-by noise dataset and it is shown that both approaches are capable of accurately and efficiently synthesize a moving source.

Cite

CITATION STYLE

APA

Alkmim, M., Vandernoot, G., Cuenca, J., Janssens, K., Desmet, W., & De Ryck, L. (2023). Real-time sound synthesis of pass-by noise: comparison of spherical harmonics and time-varying filters. Acta Acustica, 7. https://doi.org/10.1051/aacus/2023029

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free