Abstract
We provide guarantees for approximate Gaussian Process (GP) regression resulting from two common low-rank kernel approximations: based on random Fourier features, and based on truncating the kernel’s Mercer expansion. In particular, we bound the Kullback–Leibler divergence between an exact GP and one resulting from one of the afore-described low-rank approximations to its kernel, as well as between their corresponding predictive densities, and we also bound the error between predictive mean vectors and between predictive covariance matrices computed using the exact versus using the approximate GP. We provide experiments on both simulated data and standard benchmarks to evaluate the effectiveness of our theoretical bounds.
Cite
CITATION STYLE
Daskalakis, C., Dellaportas, P., & Panos, A. (2022). How Good are Low-Rank Approximations in Gaussian Process Regression? In Proceedings of the 36th AAAI Conference on Artificial Intelligence, AAAI 2022 (Vol. 36, pp. 6463–6470). Association for the Advancement of Artificial Intelligence. https://doi.org/10.1609/aaai.v36i6.20598
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.