Leveraging real-world data to investigate multiple sclerosis disease behavior, prognosis, and treatment

63Citations
Citations of this article
133Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Randomized controlled clinical trials and real-world observational studies provide complementary information but with different validity. Some clinical questions (disease behavior, prognosis, validation of outcome measures, comparative effectiveness, and long-term safety of therapies) are often better addressed using real-world data reflecting larger, more representative populations. Integration of disease history, clinician-reported outcomes, performance tests, and patient-reported outcome measures during patient encounters; imaging and biospecimen analyses; and data from wearable devices increase dataset utility. However, observational studies utilizing these data are susceptible to many potential sources of bias, creating barriers to acceptance by regulatory agencies and the medical community. Therefore, data standardization and validation within datasets, harmonization across datasets, and application of appropriate analysis methods are important considerations. We review approaches to improve the scope, quality, and analyses of real-world data to advance understanding of multiple sclerosis and its treatment, as an example of opportunities to better support patient care and research.

Cite

CITATION STYLE

APA

Cohen, J. A., Trojano, M., Mowry, E. M., Uitdehaag, B. M. J., Reingold, S. C., & Marrie, R. A. (2020). Leveraging real-world data to investigate multiple sclerosis disease behavior, prognosis, and treatment. Multiple Sclerosis Journal, 26(1), 23–37. https://doi.org/10.1177/1352458519892555

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free