Effect of post-ruminal guanidinoacetic acid supplementation on creatine synthesis and plasma homocysteine concentrations in cattle

26Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Creatine stores high-energy phosphate bonds in muscle, which is critical for muscle activity. In animals, creatine is synthesized in the liver from guanidinoacetic acid (GAA) with methylation by S-adenosylmethionine. Because methyl groups are used for the conversion of GAA to creatine, methyl group deficiency may occur as a result of GAA supplementation. With this study, the metabolic responses of cattle to post-ruminal supplementation of GAA were evaluated with and without methionine (Met) supplementation as a source of methyl groups. Six ruminally cannulated Holstein heifers (520 kg) were used in a split-plot design with treatments arranged as a 2 × 5 factorial. The main plot treatments were 0 or 12 g/d of l-Met arranged in a completely randomized design; three heifers received each main plot treatment throughout the entire experiment. Subplot treatments were 0, 10, 20, 30, and 40 g/d of GAA, with GAA treatments provided in sequence from lowest to highest over five 6-d periods. Treatments were infused continuously to the abomasum. Heifers were limit-fed twice daily a diet consisting of (dry matter basis) 5.3 kg/d rolled corn, 3.6 kg/d alfalfa hay, and 50 g/d trace-mineralized salt. Plasma Met increased (P < 0.01) when Met was supplemented, but it was not affected by supplemental GAA. Supplementing GAA linearly increased plasma arginine (% of total amino acids) and plasma concentrations of GAA and creatinine (P < 0.001). Plasma creatine was increased at all levels of GAA except when 40 g/d of GAA was supplemented with no Met (GAA-quadratic × Met, P = 0.07). Plasma homocysteine was not affected by GAA supplementation when heifers received 12 g/d Met, but it was increased when 30 or 40 g/d of GAA was supplemented without Met (GAA-linear × Met, P = 0.003); increases were modest and did not suggest a dangerous hyperhomocysteinemia. Urinary concentrations of GAA and creatine were increased by all levels of GAA when 12 g/d Met was supplemented; increasing GAA supplementation up to 30 g/d without Met increased urinary GAA and creatine concentrations, but 40 g/d GAA did not affect urine concentrations of GAA and creatine when no Met was supplemented. Overall, post-ruminal GAA supplementation increased creatine supply to cattle. A methyl group deficiency, demonstrated by modest increases in plasma homocysteine, became apparent when 30 or 40 g/d of GAA was supplemented, but it was ameliorated by 12 g/d Met.

Cite

CITATION STYLE

APA

Ardalan, M., Batista, E. D., & Titgemeyer, E. C. (2020). Effect of post-ruminal guanidinoacetic acid supplementation on creatine synthesis and plasma homocysteine concentrations in cattle. Journal of Animal Science, 98(3). https://doi.org/10.1093/JAS/SKAA072

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free