Dendritic cells (DCs) are central players in immunity and are used in immune-adoptive vaccine protocols in humans. IFN-γ, mandatory in Th-1 polarization and endowed with regulatory properties, is currently used to condition monocyte-derived DCs (MDDC) in cancer therapy and in clinical trials to treat chronic infectious diseases. We therefore performed a wide analysis of IFN-γ signaling consequences on MDDC multiple effector functions. IFN-γ itself induced IL-27p28 expression and survival but did not promote relevant CCR7-driven migration or activated Th-1 cell recruitment capacity in MDDC. Administered in association with classical maturation stimuli such as CD40 or TLR-4 stimulation, IFN-γ up-regulated IL-27 and IL-12 production, CCR7-driven migration, and activated Th-1 cell recruitment, whereas it decreased IL-10 production and STAT3 phosphorylation. CD38 signaling, which orchestrates migration, survival, and Th-1 polarizing ability of mature MDDC, was involved in IFN-γ-mediated effects. Thus, IFN-γ is a modulator of multiple DC effector functions that can be helpful in MDDC-based vaccination protocols. These data also help understand the dual role exerted by this cytokine as both an inducer and a regulator of inflammation and immune response.
CITATION STYLE
Frasca, L., Nasso, M., Spensieri, F., Fedele, G., Palazzo, R., Malavasi, F., & Ausiello, C. M. (2008). IFN-γ Arms Human Dendritic Cells to Perform Multiple Effector Functions. The Journal of Immunology, 180(3), 1471–1481. https://doi.org/10.4049/jimmunol.180.3.1471
Mendeley helps you to discover research relevant for your work.