Shielding Effect of Nanomicelles: Stable and Catalytically Active Oxidizable Pd(0) Nanoparticle Catalyst Compatible for Cross-Couplings of Water-Sensitive Acid Chlorides in Water

31Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Under the shielding effect of nanomicelles, a sustainable micellar technology for the design and convenient synthesis of ligand-free oxidizable ultrasmall Pd(0) nanoparticles (NPs) and their subsequent catalytic exploration for couplings of water-sensitive acid chlorides in water is reported. A proline-derived amphiphile, PS-750-M, plays a crucial role in stabilizing these NPs, preventing their aggregation and oxidation state changes. These NPs were characterized using 13C nuclear magnetic resonance (NMR), infrared (IR), and surface-enhanced Raman scattering (SERS) spectroscopy to evaluate the carbonyl interactions of PS-750-M with Pd. High-resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectroscopy (EDX) studies were performed to reveal the morphology, particle size distribution, and chemical composition, whereas X-ray photoelectron spectroscopy (XPS) measurements unveiled the oxidation state of the metal. In the cross-couplings of water-sensitive acid chlorides with boronic acids, the micelle's shielding effect and boronic acids plays a vital role in preventing unwanted side reactions, including the hydrolysis of acid chlorides under basic pH. This approach is scalable and the applications are showcased in multigram scale reactions.

Cite

CITATION STYLE

APA

Ansari, T. N., Sharma, S., Hazra, S., Jasinski, J. B., Wilson, A. J., Hicks, F., … Handa, S. (2021). Shielding Effect of Nanomicelles: Stable and Catalytically Active Oxidizable Pd(0) Nanoparticle Catalyst Compatible for Cross-Couplings of Water-Sensitive Acid Chlorides in Water. JACS Au, 1(9), 1506–1513. https://doi.org/10.1021/jacsau.1c00236

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free