Role of sampling in evaluating classical time autocorrelation functions

3Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We analyze how the choice of the sampling weight affects efficiency of the Monte Carlo evaluation of classical time autocorrelation functions. Assuming uncorrelated sampling or sampling with constant correlation length, we propose a sampling weight for which the number of trajectories needed for convergence is independent of the correlated quantity, dimensionality, dynamics, and phase-space density. By contrast, it is shown that the computational cost of the "standard" algorithm sampling from the phase-space density may scale exponentially with the number of degrees of freedom. Yet, for the stationary Gaussian distribution of harmonic systems and for the autocorrelation function of a linear function of phase-space coordinates, the computational cost of this standard algorithm is also independent of dimensionality. © 2013 AIP Publishing LLC.

Cite

CITATION STYLE

APA

Zimmermann, T., & Vaníček, J. (2013). Role of sampling in evaluating classical time autocorrelation functions. Journal of Chemical Physics, 139(10). https://doi.org/10.1063/1.4820420

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free