Nitric oxide-induced decrease in calcium sensitivity of resistance arteries is attributable to activation of the myosin light chain phosphatase and antagonized by the RhoA/Rho kinase pathway

126Citations
Citations of this article
41Readers
Mendeley users who have this article in their library.

Abstract

Background - NO-induced dilations in resistance arteries (RAs) are not associated with decreases in vascular smooth muscle cell Ca2+. We tested whether a cGMP-dependent activation of the smooth muscle myosin light chain phosphatase (MLCP) resulting in a Ca2+ desensitization of the contractile apparatus was the underlying mechanism and whether it could be antagonized by the RhoA pathway. Methods and Results - The Ca2+ sensitivity of RA was assessed as the relation between changes in diameter and [Ca2+]i in depolarized RA (120 mol/L K+) exposed to stepwise increases in Ca2+ex (0 to 3 mmol/L). Effects of 10 μmol/L sodium nitroprusside (SNP) on Ca2+ sensitivity were determined before and after application of the soluble guanylate cyclase inhibitor ODQ (1 μmol/L) and the MLCP inhibitor calyculin A (120 nmol/L) and in presence of the RhoA-activating phospholipid sphingosine-1-phosphate (S1P, 12 nmol/L). SNP-induced dilations were also studied in controls and in RAs pretreated with the Rho kinase inhibitor Y27632 or transfected with a dominant-negative RhoA mutant (N19RhoA). Constrictions elicited by increasing Ca2+ex were significantly attenuated by SNP, which, however, left associated increases in [Ca2+]i unaffected. This NO-induced attenuation was blocked by ODQ, calyculin A, and S1P. The S1P-induced translocation of RhoA indicating activation of the GTPase was not reversed by SNP. Inhibition of RhoA/Rho kinase by N19RhoA or Y27632 significantly augmented SNP-induced dilations. Conclusions - NO dilates RA by activating the MLCP in a cGMP-dependent manner, thereby reducing the apparent Ca2+ sensitivity of the contractile apparatus. MLCP inactivation via the RhoA/Rho kinase pathway antagonizes this Ca2+-desensitizing effect that, in turn, can be restored using RhoA/Rho kinase inhibitors.

Cite

CITATION STYLE

APA

Bolz, S. S., Vogel, L., Sollinger, D., Derwand, R., De Wit, C., Loirand, G., & Pohl, U. (2003). Nitric oxide-induced decrease in calcium sensitivity of resistance arteries is attributable to activation of the myosin light chain phosphatase and antagonized by the RhoA/Rho kinase pathway. Circulation, 107(24), 3081–3087. https://doi.org/10.1161/01.CIR.0000074202.19612.8C

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free