Refractometric Fiber Optic Sensor for Detecting Salinity of Water

  • Patil S
  • Shaligram A
N/ACitations
Citations of this article
39Readers
Mendeley users who have this article in their library.

Abstract

Salinity is an important property of industrial and natural waters. It is defined as the measure of the mass of dissolved salts in a given mass of solution. High salinity has an impact on people and industries reliant on water. High levels of salt can reduce crop yields, limit the choice of crops that can be grown and, at higher concentrations over long periods, can kill trees and make the land unsuitable for agricultural purposes. Salinity increases the “hardness” of water, which can mean more soap and detergents have to be used or water softeners installed and maintained. This can also cause scaling in pipes and heaters. The experimental determination of the salt content by drying and weighing presents some difficulties due to the loss of some components. The only reliable way to determine the true or absolute salinity of natural water is to make a complete chemical analysis. However, the method is time consuming and cannot yield the precision necessity for accurate work. Thus to determine salinity, one normally used method involves the measurement of a physical property such as conductivity, density or refractive index. The paper reports the refractometric fiber optic sensor for detection of salinity of water. The mathematical model is developed for detection of the refractive index of liquid and simulated in MATLAB. The fiber optic sensor probe is developed to measure the refractive index of the solution containing different amount of salt dissolved in water i.e. different molar concentrations. Experiments are carried out using the developed probe for these solutions. Experimental results are showing good agreement with the simulated results.

Cite

CITATION STYLE

APA

Patil, S. S., & Shaligram, A. D. (2013). Refractometric Fiber Optic Sensor for Detecting Salinity of Water. Journal of Sensor Technology, 03(03), 70–74. https://doi.org/10.4236/jst.2013.33012

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free