Biosorption of Congo Red from Aqueous Solutions Based on Self-Immobilized Mycelial Pellets: Kinetics, Isotherms, and Thermodynamic Studies

31Citations
Citations of this article
45Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In the current study, Aspergillus fumigatus and Pseudomonas putida were co-cultured to obtain self-immobilized mycelial pellets to evaluate the decolorization efficiency of Congo red (CR). The obtained co-culture exhibited the highest decolorization efficiency of 99.22% compared to monoculture of A. fumigatus (89.20%) and P. putida (55.04%). The morphology and surface properties of the mycelial pellets were characterized by SEM, FTIR, BET, and XPS. The adsorption kinetics and isotherms were well described by pseudo-second-order and Langmuir models. The findings revealed that the removal efficiency of the mycelial pellet for CR was significantly influenced by physicochemical parameters. Thermodynamic result showed that the biosorption process was endothermic. The maximum adsorption capacity can be obtained from the Langmuir model, which is 316.46 mg/g, it suggests that mycelial pellet was an efficient biosorbent to remove CR from aqueous solution. This study indicates that the mycelial pellet can develop a sustainable approach to eliminate CR from the wastewater.

Cite

CITATION STYLE

APA

Wu, K., Pan, X., Zhang, J., Zhang, X., Salah Zene, A., & Tian, Y. (2020). Biosorption of Congo Red from Aqueous Solutions Based on Self-Immobilized Mycelial Pellets: Kinetics, Isotherms, and Thermodynamic Studies. ACS Omega, 5(38), 24601–24612. https://doi.org/10.1021/acsomega.0c03114

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free