Design of a multicomponent peptide-woven nanocomplex for delivery of siRNA

8Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.

Abstract

We developed and tested a multicomponent peptide-woven siRNA nanocomplex (PwSN) comprising different peptides designed for efficient cellular targeting, endosomal escape, and release of siRNA. To enhance tumor-specific cellular uptake, we connected an interleukin-4 receptor-targeting peptide (I4R) to a nine-arginine peptide (9r), yielding I4R-9r. To facilitate endosomal escape, we blended endosomolytic peptides into the I4R-9r to form a multicomponent nanocomplex. Lastly, we modified 9r peptides by varying the number and positions of positive charges to obtain efficient release of siRNA from the nanocomplex in the cytosol. Using this step-wise approach for overcoming the biological challenges of siRNA delivery, we obtained an optimized PwSN with significant biological activity in vitro and in vivo. Interestingly, surface plasmon resonance analyses and three-dimensional peptide models demonstrated that our designed peptide adopted a unique structure that was correlated with faster complex disassembly and a better gene-silencing effect. These studies further elucidate the siRNA nanocomplex delivery pathway and demonstrate the applicability of our stepwise strategy to the design of siRNA carriers capable of overcoming multiple challenges and achieving efficient delivery.

Cite

CITATION STYLE

APA

Jun, E., Kim, S., Kim, J. H., Cha, K., So, I. S., Son, H. N., … Kim, I. S. (2015). Design of a multicomponent peptide-woven nanocomplex for delivery of siRNA. PLoS ONE, 10(2). https://doi.org/10.1371/journal.pone.0118310

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free