Physiological and Biochemical Performances of Menthol-Induced Aposymbiotic Corals

16Citations
Citations of this article
68Readers
Mendeley users who have this article in their library.

Abstract

The unique mutualism between corals and their photosynthetic zooxanthellae (Symbiodinium spp.) is the driving force behind functional assemblages of coral reefs. However, the respective roles of hosts and Symbiodinium in this endosymbiotic association, particularly in response to environmental challenges (e.g., high sea surface temperatures), remain unsettled. One of the key obstacles is to produce and maintain aposymbiotic coral hosts for experimental purposes. In this study, a simple and gentle protocol to generate aposymbiotic coral hosts (Isopora palifera and Stylophora pistillata) was developed using repeated incubation in menthol/artificial seawater (ASW) medium under light and in ASW in darkness, which depleted more than 99% of Symbiodinium from the host within 4~8 days. As indicated by the respiration rate, energy metabolism (by malate dehydrogenase activity), and nitrogen metabolism (by glutamate dehydrogenase activity and profiles of free amino acids), the physiological and biochemical performances of the menthol-induced aposymbiotic corals were comparable to their symbiotic counterparts without nutrient supplementation (e.g., for Stylophora) or with a nutrient supplement containing glycerol, vitamins, and a host mimic of free amino acid mixture (e.g., for Isopora). Differences in biochemical responses to menthol-induced bleaching between Stylophora and Isopora were attributed to the former digesting Symbiodinium rather than expelling the algae live as found in the latter species. Our studies showed that menthol could successfully bleach corals and provided aposymbiotic corals for further exploration of coral-alga symbioses. © 2012 Wang et al.

Cite

CITATION STYLE

APA

Wang, J. T., Chen, Y. Y., Tew, K. S., Meng, P. J., & Chen, C. A. (2012). Physiological and Biochemical Performances of Menthol-Induced Aposymbiotic Corals. PLoS ONE, 7(9). https://doi.org/10.1371/journal.pone.0046406

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free