Bdellovibrio bacteriovorus directly attacks Pseudomonas aeruginosa and Staphylococcus aureus cystic fibrosis isolates

39Citations
Citations of this article
97Readers
Mendeley users who have this article in their library.

Abstract

Bdellovibrio bacteriovorus is a predator bacterial species found in the environment and within the human gut, able to attack Gram-negative prey. Cystic fibrosis (CF) is a genetic disease which usually presents lung colonization by Pseudomonas aeruginosa or Staphylococcus aureus biofilms. Here, we investigated the predatory behavior of B. bacteriovorus against these two pathogenic species with: (1) broth culture; (2) "static" biofilms; (3) field emission scanning electron microscope (FESEM); (4) "flow" biofilms; (5) zymographic technique. We had the first evidence of B. bacteriovorus survival with a Gram-positive prey, revealing a direct cell-to-cell contact with S. aureus and a new "epibiotic" foraging strategy imaged with FESEM. Mean attaching time of HD100 to S. aureus cells was 185 s, while "static" and "flow" S. aureus biofilms were reduced by 74 (at 24 h) and 46% (at 20 h), respectively. Furthermore, zymograms showed a differential bacteriolytic activity exerted by the B. bacteriovorus lysates on P. aeruginosa and S. aureus. The dual foraging system against Gram-negative (periplasmic) and Gram-positive (epibiotic) prey could suggest the use of B. bacteriovorus as a "living antibiotic" in CF, even if further studies are required to simulate its in vivo predatory behavior. © 2014 Iebba, Totino, Santangelo, Gagliardi, Ciotoli, Virga, Ambrosi, Pompili, De Biase, Selan, Artini, Pantanella, Mura, Passariello, Nicoletti, Nencioni, Trancassini, Quattrucci and Schippa.

Cite

CITATION STYLE

APA

Iebba, V., Totino, V., Santangelo, F., Gagliardi, A., Ciotoli, L., Virga, A., … Schippa, S. (2014). Bdellovibrio bacteriovorus directly attacks Pseudomonas aeruginosa and Staphylococcus aureus cystic fibrosis isolates. Frontiers in Microbiology, 5(JUN). https://doi.org/10.3389/fmicb.2014.00280

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free