The cognitive consequences of postnatal brain exposure to ionizing radiation (IR) at low to moderate doses in the adult are not fully established. Because of the advent of pediatric computed tomography scans used for head exploration, improving our knowledge of these effects represents a major scientific challenge. To evaluate how IR may affect the developing brain, models of either whole brain (WB) or targeted dorsal dentate gyrus (DDG) irradiation in C57Bl/6J ten-day-old male mice were previously developed. Here, using these models, we assessed and compared the effect of IR (doses range: 0.25–2 Gy) on long-term spatial memory in adulthood using a spatial water maze task. We then evaluated the effects of IR exposure on adult hippocampal neurogenesis, a form of plasticity involved in spatial memory. Three months after WB exposure, none of the doses resulted in spatial memory impairment. In contrast, a deficit in memory retrieval was identified after DDG exposure for the dose of 1 Gy only, highlighting a non-monotonic dose-effect relationship in this model. At this dose, a brain irradiated volume effect was also observed when studying adult hippocampal neurogenesis in the two models. In particular, only DDG exposure caused alteration in cell differentiation. The most deleterious effect observed in adult hippocampal neurogenesis after targeted DDG exposure at 1 Gy may contribute to the memory retrieval deficit in this model. Altogether these results highlight the complexity of IR mechanisms in the brain that can lead or not to cognitive disorders and provide new knowledge of interest for the radiation protection of children.
CITATION STYLE
Serrano, C., Dos Santos, M., Kereselidze, D., Beugnies, L., Lestaevel, P., Poirier, R., & Durand, C. (2021). Targeted dorsal dentate gyrus or whole brain irradiation in juvenile mice differently affects spatial memory and adult hippocampal neurogenesis. Biology, 10(3), 1–15. https://doi.org/10.3390/biology10030192
Mendeley helps you to discover research relevant for your work.