Charged Domain Wall and Polar Vortex Topologies in a Room-Temperature Magnetoelectric Multiferroic Thin Film

17Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Multiferroic topologies are an emerging solution for future low-power magnetic nanoelectronics due to their combined tuneable functionality and mobility. Here, we show that in addition to being magnetoelectric multiferroic at room temperature, thin-film Aurivillius phase Bi6TixFeyMnzO18 is an ideal material platform for both domain wall and vortex topology-based nanoelectronic devices. Utilizing atomic-resolution electron microscopy, we reveal the presence and structure of 180°-type charged head-to-head and tail-to-tail domain walls passing throughout the thin film. Theoretical calculations confirm the subunit cell cation site preference and charged domain wall energetics for Bi6TixFeyMnzO18. Finally, we show that polar vortex-type topologies also form at out-of-phase boundaries of stacking faults when internal strain and electrostatic energy gradients are altered. This study could pave the way for controlled polar vortex topology formation via strain engineering in other multiferroic thin films. Moreover, these results confirm that the subunit cell topological features play an important role in controlling the charge and spin state of Aurivillius phase films and other multiferroic heterostructures.

Cite

CITATION STYLE

APA

Moore, K., O’Connell, E. N., Griffin, S. M., Downing, C., Colfer, L., Schmidt, M., … Conroy, M. (2022). Charged Domain Wall and Polar Vortex Topologies in a Room-Temperature Magnetoelectric Multiferroic Thin Film. ACS Applied Materials and Interfaces, 14(4), 5525–5536. https://doi.org/10.1021/acsami.1c17383

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free