The implantation of synthetic biomaterials initiates the foreign body response (FBR), which is characterized by macrophage infiltration, foreign body giant cell formation, and fibrotic encapsulation of the implant. The FBR is orchestrated by a complex network of immune modulators, including diverse cell types, soluble mediators, and unique cell surface interactions. The specific tissue locations, expression patterns, and spatial distribution of these immune modulators around the site of implantation are not clear. This study describes a model for studying the FBR in vivo and specifically evaluates the spatial relationship of immune modulators. We modified a biomaterials implantation in vivo model that allowed for crosssectional in situ analysis of the FBR. Immunohistochemical techniques were used to determine the localization of soluble mediators, ie, interleukin (IL)-4, IL-13, IL-10, IL-6, transforming growth factor-β, tumor necrosis factor-α, interferon-γ, and MCP-1; specific cell types, ie, macrophages, neutrophils, fibroblasts, and lymphocytes; and cell surface markers, ie, F4/80, CD11b, CD11c, and Ly-6C, at early, middle, and late stages of the FBR in subcutaneous implant sites. The cytokines IL-4, IL-13, IL-10, and transforming growth factor-β were localized to implant-adherent cells that included macrophages and foreign body giant cells. A better understanding of the FBR in vivo will allow the development of novel strategies to enhance biomaterial implant design to achieve better performance and safety of biomedical devices at the site of implant. Copyright © American Society for Investigative Pathology.
CITATION STYLE
Higgins, D. M., Basaraba, R. J., Hohnbaum, A. C., Lee, E. J., Grainger, D. W., & Gonzalez-Juarrero, M. (2009). Localized immunosuppressive environment in the foreign body response to implanted biomaterials. American Journal of Pathology, 175(1), 161–170. https://doi.org/10.2353/ajpath.2009.080962
Mendeley helps you to discover research relevant for your work.