Asymmetric development of plant lateral organs is initiated by a partitioning of organ primordia into distinct domains along their adaxial/abaxial axis. Two primary determinants of abaxial cell fate are members of the KANADI and YABBY gene families. Progressive loss of KANADI activity in loss-of-function mutants results in progressive transformation of abaxial cell types into adaxial ones and a correlated loss of lamina formation. Novel, localized planes of blade expansion occur in some kanadi loss-of-function genotypes and these ectopic lamina outgrowths are YABBY dependent. We propose that the initial asymmetric leaf development is regulated primarily by mutual antagonism between KANADI and PHB-like genes, which is translated into polar YABBY expression. Subsequently, polar YABBY expression contributes both to abaxial cell fate and to abaxial/adaxial juxtaposition-mediated lamina expansion.
CITATION STYLE
Eshed, Y., Izhaki, A., Baum, S. F., Floyd, S. K., & Bowman, J. L. (2004). Asymmetric leaf development and blade expansion in Arabidopsis are mediated by KANADI and YABBY activities. Development, 131(12), 2997–3006. https://doi.org/10.1242/dev.01186
Mendeley helps you to discover research relevant for your work.