Overexpression of cold-inducible wheat galactinol synthase confers tolerance to chilling stress in transgenic rice

54Citations
Citations of this article
56Readers
Mendeley users who have this article in their library.

Abstract

Galactinol synthase (GolS) is considered to be a key regulator of the biosynthesis of Raffinose family oligosaccharides (RFOs). Accumulation of RFOs has been reported to play a role in protection against abiotic stresses. We identified two cDNAs encoding galactinol synthase from wheat (Triticum aestivum L.), which we designated as TaGolS1 and TaGolS2. Expression of the two TaGolS genes was induced by cold stress but not by drought, heat stress or ABA treatment in wheat. We generated transgenic lines of rice (Oryza sativa L.) constitutively overexpressing TaGolS1 or TaGolS2. These transgenic plants accumulated significantly higher levels of galactinol and raffinose than did wild-type plants and exhibited enhanced cold-stress tolerance. The results demonstrate the involvement of galactinol and raffinose in the development of chilling stress in rice and indicate that the genetic modification of the biosynthesis of RFOs by transformation with GolS genes could be an effective method for enhancing chilling-stress tolerance in rice.

Cite

CITATION STYLE

APA

Shimosaka, E., & Ozawa, K. (2015). Overexpression of cold-inducible wheat galactinol synthase confers tolerance to chilling stress in transgenic rice. Breeding Science, 65(5), 363–371. https://doi.org/10.1270/jsbbs.65.363

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free