Animal models of led-induced phototoxicity. Short-and long-term in vivo and ex vivo retinal alterations

9Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

Abstract

Phototoxicity animal models have been largely studied due to their degenerative com-munalities with human pathologies, e.g., age-related macular degeneration (AMD). Studies have documented not only the effects of white light exposure, but also other wavelengths using LEDs, such as blue or green light. Recently, a blue LED-induced phototoxicity (LIP) model has been devel-oped that causes focal damage in the outer layers of the superior-temporal region of the retina in rodents. In vivo studies described a progressive reduction in retinal thickness that affected the most extensively the photoreceptor layer. Functionally, a transient reduction in a-and b-wave amplitude of the ERG response was observed. Ex vivo studies showed a progressive reduction of cones and an involvement of retinal pigment epithelium cells in the area of the lesion and, in parallel, an activation of microglial cells that perfectly circumscribe the damage in the outer retinal layer. The use of neuroprotective strategies such as intravitreal administration of trophic factors, e.g., basic fibroblast growth factor (bFGF), brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) or pigment epithelium-derived factor (PEDF) and topical administration of the selective alpha-2 agonist (Brimonidine) have demonstrated to increase the survival of the cone population after LIP.

Cite

CITATION STYLE

APA

de Imperial-Ollero, J. A. M., Gallego-Ortega, A., Ortín-Martínez, A., Villegas-Pérez, M. P., Valiente-Soriano, F. J., & Vidal-Sanz, M. (2021, November 1). Animal models of led-induced phototoxicity. Short-and long-term in vivo and ex vivo retinal alterations. Life. MDPI. https://doi.org/10.3390/life11111137

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free