Short-wavelength infrared (SWIR) photodetection and visualization has profound impacts on different applications. In this work, a large-area organic SWIR photodetector (PD) that is sensitive to SWIR light over a wavelength range from 1000 to 1600 nm and a SWIR visualization device that is capable of upconverting SWIR to visible light are developed. The organic SWIR PD, comprising an organic SWIR sensitive blend of a near-infrared polymer and a nonfullerene n-type small molecule SWIR dye, demonstrates an excellent capability for real-time heart rate monitoring, offering an attractive opportunity for portable and wearable healthcare gadgets. The SWIR-to-visible upconversion device is also demonstrated by monolithic integration of an organic SWIR PD and a perovskite light-emitting diode, converting SWIR (1050 nm) to visible light (516 nm). The most important attribute of the SWIR visualizing device is its solution fabrication capability for large-area SWIR detection and visualization at a low cost. The results are very encouraging, revealing the exciting large-area SWIR photodetection and visualization for a plethora of applications in environmental pollution, surveillance, bioimaging, medical, automotive, food, and wellness monitoring.
CITATION STYLE
Li, N., Lan, Z., Lau, Y. S., Xie, J., Zhao, D., & Zhu, F. (2020). SWIR Photodetection and Visualization Realized by Incorporating an Organic SWIR Sensitive Bulk Heterojunction. Advanced Science, 7(14). https://doi.org/10.1002/advs.202000444
Mendeley helps you to discover research relevant for your work.