Confirmatory composite analysis

159Citations
Citations of this article
302Readers
Mendeley users who have this article in their library.

Abstract

This article introduces confirmatory composite analysis (CCA) as a structural equation modeling technique that aims at testing composite models. It facilitates the operationalization and assessment of design concepts, so-called artifacts. CCA entails the same steps as confirmatory factor analysis: model specification, model identification, model estimation, and model assessment. Composite models are specified such that they consist of a set of interrelated composites, all of which emerge as linear combinations of observable variables. Researchers must ensure theoretical identification of their specified model. For the estimation of the model, several estimators are available; in particular Kettenring's extensions of canonical correlation analysis provide consistent estimates. Model assessment mainly relies on the Bollen-Stine bootstrap to assess the discrepancy between the empirical and the estimated model-implied indicator covariance matrix. A Monte Carlo simulation examines the efficacy of CCA, and demonstrates that CCA is able to detect various forms of model misspecification.

Cite

CITATION STYLE

APA

Schuberth, F., Henseler, J., & Dijkstra, T. K. (2018). Confirmatory composite analysis. Frontiers in Psychology, 9(DEC). https://doi.org/10.3389/fpsyg.2018.02541

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free