Towards Table-to-Text Generation with Pretrained Language Model: A Table Structure Understanding and Text Deliberating Approach

7Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.

Abstract

Although remarkable progress on the neural table-to-text methods has been made, the generalization issues hinder the applicability of these models due to the limited source tables. Large-scale pretrained language models sound like a promising solution to tackle such issues. However, how to effectively bridge the gap between the structured table and the text input by fully leveraging table information to fuel the pretrained model is still not well explored. Besides, another challenge of integrating the deliberation mechanism into the text-to-text pretrained model for solving the table-to-text task remains seldom studied. In this paper, to implement the table-to-text generation with pretrained language model, we propose a table structure understanding and text deliberating approach, namely TASD. To be specific, we devise a three-layered multi-head attention network to realize the table-structure-aware text generation model with the help of the pretrained language model. Furthermore, a multi-pass decoder framework is adopted to enhance the capability of polishing generated text for table descriptions. The empirical studies, as well as human evaluation, on two public datasets, validate that our approach can generate faithful and fluent descriptive texts for different types of tables.

Cite

CITATION STYLE

APA

Chen, M., Lu, X., Xu, T., Li, Y., Zhou, J., Dou, D., & Xiong, H. (2022). Towards Table-to-Text Generation with Pretrained Language Model: A Table Structure Understanding and Text Deliberating Approach. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022 (pp. 8199–8210). Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/2022.emnlp-main.562

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free