Generation of high-density nanoparticles in the carbothermal shock method

67Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The carbothermal shock (CTS) method has attracted considerable attention in recent years because it enables the generation of finely controlled polyelemental alloy nanoparticles (NPs). However, fabricating high surface coverage of NPs with minimized exposure of the carbon substrate is essential for various electrochemical applications and has been a critical limitation in CTS method. Here, we developed a methodology for creating NPs with high surface coverage on a carbon substrate by maximizing defect sites of cellulose during CTS. Cu NPs with high surface coverage of -85%, various single NPs and polyelemental alloy NPs were densely fabricated with high uniformity and dispersity. The synthesized Cu NPs on cellulose/carbon paper substrate were used in electrocatalytic CO2 reduction reaction showing selectivity to ethylene of -49% and high stability for over 30 hours of reaction. Our cellulose-derived CTS method enables the greater availability of polyelemental NPs for a wide range of catalytic and electrochemical applications.

Cite

CITATION STYLE

APA

Song, J. Y., Kim, C., Kim, M., Cho, K. M., Gereige, I., Jung, W. B., … Jung, H. T. (2021). Generation of high-density nanoparticles in the carbothermal shock method. Science Advances, 7(48). https://doi.org/10.1126/sciadv.abk2984

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free