Observation of a reduced-turbulence regime with boron powder injection in a stellarator

Citations of this article
Mendeley users who have this article in their library.

This article is free to access.


In state-of-the-art stellarators, turbulence is a major cause of the degradation of plasma confinement. To maximize confinement, which eventually determines the amount of nuclear fusion reactions, turbulent transport needs to be reduced. Here we report the observation of a confinement regime in a stellarator plasma that is characterized by increased confinement and reduced turbulent fluctuations. The transition to this regime is driven by the injection of submillimetric boron powder grains into the plasma. With the line-averaged electron density being kept constant, we observe a substantial increase of stored energy and electron and ion temperatures. At the same time, the amplitude of the plasma turbulent fluctuations is halved. While lower frequency fluctuations are damped, higher frequency modes in the range between 100 and 200 kHz are excited. We have observed this regime for different heating schemes, namely with both electron and ion cyclotron resonant radio frequencies and neutral beams, for both directions of the magnetic field and both hydrogen and deuterium plasmas.




Nespoli, F., Masuzaki, S., Tanaka, K., Ashikawa, N., Shoji, M., Gilson, E. P., … Morisaki, T. (2022). Observation of a reduced-turbulence regime with boron powder injection in a stellarator. Nature Physics, 18(3), 350–356. https://doi.org/10.1038/s41567-021-01460-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free