Optimization of carvedilol solid lipid nanoparticles: An approach to control the release and enhance the oral bioavailability on rabbits

8Citations
Citations of this article
34Readers
Mendeley users who have this article in their library.

Abstract

Solid lipid nanoparticles (SLNs) are prospective carriers for oral delivery of poorly soluble drugs with low bioavailability. Therefore, the study aimed at developing carvedilol (CVD) in SLNs to control its release and enhance its bioavailability in the management of hypertension, and cardiac diseases. Box-Behnken design (BBD) was applied to optimize the variables affecting the quality of CVD-SLNs which prepared by homogenization-ultrasonication technique. The concentrations of Percirol (X1), Gelucire (X2), and stearylamine (X3) were chosen as the crucial independent variables. The dependent variables were estimated and analyzed by Statgraphics software to achieve the optimum characteristics of the developed SLNs. The optimized SLNs was evaluated in vitro and in vivo for pharmacokinetic parameters on male New Zealand white rabbits. The results of this study revealed that the CVD-SLNs have a colloidal size of 31.3 nm with zeta potential of 24.25 mV indicating good stability and 91.43% entrapment efficiency. The in vitro release of CVD from the SLNs was best fitted to Hixon-Crowell model that describes the release from the particles with uniform size. The in vivo pharmacokinetics results indicated the prolongation in the mean residence time of CVD to 23 h when delivered in SLNs and its oral bioavailability enhanced by more than 2-folds.

Cite

CITATION STYLE

APA

El-Say, K. M., & Hosny, K. M. (2018). Optimization of carvedilol solid lipid nanoparticles: An approach to control the release and enhance the oral bioavailability on rabbits. PLoS ONE, 13(8). https://doi.org/10.1371/journal.pone.0203405

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free