Abstract
Water ice has a strong spectral feature at a wavelength of approximately 3 μ m, which plays a vital role in our understanding of the icy universe. In this study, we investigate the scattering polarization of this water-ice feature. The linear polarization degree of light scattered by micron-sized icy grains is known to be enhanced at the ice band; however, the dependence of this polarization enhancement on various grain properties is unclear. We find that the enhanced polarization at the ice band is sensitive to the presence of micron-sized grains as well as their ice abundance. We demonstrate that this enhancement is caused by the high absorbency of the water-ice feature, which attenuates internal scattering and renders the surface reflection dominant over internal scattering. Additionally, we compare our models with polarimetric observations of the low-mass protostar L1551 IRS 5. Our results show that scattering by a maximum grain radius of a few microns with a low water-ice abundance is consistent with observations. Thus, scattering polarization of the water-ice feature is a useful tool for characterizing ice properties in various astronomical environments.
Cite
CITATION STYLE
Tazaki, R., Murakawa, K., Muto, T., Honda, M., & Inoue, A. K. (2021). Scattering Polarization of 3 μm Water-ice Feature by Large Icy Grains. The Astrophysical Journal, 910(1), 26. https://doi.org/10.3847/1538-4357/abdd3d
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.