Construction of a phosphate-rich polyacrylonitrile fiber surface microenvironment for efficient purification of crystal violet wastewater

8Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Wastewater purification using fibrous adsorbents has received much attention due to their high efficiency, low cost, and recyclability. In this work, phosphate modified polyacrylonitrile fiber (B-PANEAPF) was prepared and used to remove cationic dyes. The B-PANEAPF showed the best adsorption capacity for crystal violet (CV) when compared with rhodamine B, methyl green, Victoria blue B, methylene blue, and neutral red. The adsorption tests revealed that the fiber possessed high adsorption efficiency and achieved semi-saturated adsorption within 15 min. The maximum adsorption capacity of 354.46 mg g-1 as calculated by the Langmuir adsorption model was higher than many other adsorbents. Furthermore, the B-PANEAPF was used to remove 210 mL of CV in a continuous-flow process with a high removal efficiency over 90%. Besides, the phosphate functionalized fiber could easily decrease the concentration of CV to below 0.5 mg L-1 which is below the maximum effluent discharge standard of 15 mg L-1 prescribed in China. It could also be fully recovered and easily separated from the solution to achieve re-use 10 cycles. Moreover, the adsorption mechanism indicated that the adsorption process of the fiber for CV was mainly attributed to electrostatic interaction and hydrogen bonding. In conclusion, the results suggested that the B-PANEAPF characterized by its simplicity, efficiency, eco-friendliness, and reusability, could be a promising candidate for CV removal.

Cite

CITATION STYLE

APA

Tao, M., Xu, G., Jin, M., Wang, F., Kalkhajeh, Y. K., Xiong, Q., … Gao, H. (2019). Construction of a phosphate-rich polyacrylonitrile fiber surface microenvironment for efficient purification of crystal violet wastewater. RSC Advances, 9(64), 37630–37641. https://doi.org/10.1039/c9ra07199g

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free