Virtual experimentations by deep learning on tangible materials

15Citations
Citations of this article
68Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Artificial intelligence relying on structure-property databases is an emerging powerful tool to discover new materials with targeted properties. However, this approach cannot be easily applied to tangible structures, such as plastic composites and fabrics, because of their high structural complexity. Here, we propose a deep learning computational framework that can implement virtual experiments on tangible structures. Structural representations of complex carbon nanotube films were conducted by multiple generative adversarial networks of scanning electron microscope images at four levels of magnifications, enabling a deep learning prediction of multiple properties such as electrical conductivity and surface area. 1716 virtual experiments were completed within an hour, a task that would take years for real experiments. The data can be used as a versatile database for material science, in analogy to databases of molecules and solids used in cheminformatics. Useful examples are the investigation of correlations between electrical conductivity, specific surface area, wall number phase diagrams, economic performance, and inversely designed supercapacitors.

Cite

CITATION STYLE

APA

Honda, T., Muroga, S., Nakajima, H., Shimizu, T., Kobashi, K., Morita, H., … Hata, K. (2021). Virtual experimentations by deep learning on tangible materials. Communications Materials, 2(1). https://doi.org/10.1038/s43246-021-00195-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free