Improving compression recovery of foam-formed fiber materials

19Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

Abstract

Foam technology enables the preparation of new fiber-based materials with reduced density and improved mechanical performances. By utilizing multi-scale structural features of the formed fiber network, it is possible to enhance the elasticity of lightweight cellulose materials under compressive loads. Sufficient strength is achieved by optimally combining fibers and fines of different length-scales. Elasticity is improved by adding polymers that accumulate at fiber joints, which help the network structure to recover after compression. This concept was demonstrated using natural rubber as the polymer additive. For a model network of viscose fibers and wood fines, the immediate elastic recovery after 70% compression varied from 60% to 80% from the initial thickness. This was followed by creep recovery, which reached 86% to 88% recovery within a few seconds in cross-linked samples. After 18 h, the creep recovery in those samples was almost complete at up to 97%. A similar improvement was seen for low-density materials formed with chemi-thermomechanical fibers. The formed structure and elastic properties were sensitive not only to the raw materials, but also to the elastomer stiffness and foam properties. The improved strain recovery makes the developed cellulose materials suitable for various applications, such as padding for furniture, panels, mattresses, and insulation materials.

Cite

CITATION STYLE

APA

Paunonen, S., Timofeev, O., Torvinen, K., Turpeinen, T., & Ketoja, J. A. (2018). Improving compression recovery of foam-formed fiber materials. BioResources, 13(2), 4058–4074. https://doi.org/10.15376/biores.13.2.4058-4074

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free