Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) undergoes rapid and efficient endocytosis. Since functionally active CFTR is found in purified clathrin-coated vesicles isolated from both cultured epithelial cells and intact epithelial tissues, we investigated the molecular mechanisms whereby CFTR could enter such endocytic clathrin-coated vesicles. In vivo cross-linking and in vitro pull-down assays show that full-length CFTR binds to the endocytic adaptor complex AP-2. Fusion proteins containing the carboxyl terminus of CFTR (amino acids 1404-1480) were also able to bind AP-2 but did not bind the Golgi-specific adaptor complex AP-1. Substitution of an alanine residue for tyrosine at position 1424 significantly reduced the ability of AP-2 to bind the carboxyl terminus of CFTR; however, mutation to a phenylalanine residue (an amino acid found at position 1424 in dogfish CFTR) did not perturb AP-2 binding. Secondary structure predictions suggest that Tyr1424 is present in a β-turn conformation, a conformation disrupted by alanine but not phenylalanine. Together, these data suggest that the carboxyl terminus of CFTR contains a tyrosine-based internalization signal that interacts with the endocytic adaptor complex AP-2 to facilitate efficient entry of CFTR into clathrin-coated vesicles.
Cite
CITATION STYLE
Weixel, K. M., & Bradbury, N. A. (2000). The carboxyl terminus of the cystic fibrosis transmembrane conductance regulator binds to AP-2 clathrin adaptors. Journal of Biological Chemistry, 275(5), 3655–3660. https://doi.org/10.1074/jbc.275.5.3655
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.