Quickflow response to forest harvesting and recovery in a northern hardwood forest landscape

22Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Forest harvesting often increases catchment quickflow (QF, water delivered rapidly to the stream channel), a metric of high-flow events controlling a catchment's solute and sediment export. Nevertheless, our understanding of QF responses to various silvicultural strategies (e.g., clearcutting, selection harvest, and shelterwood harvest) is incomplete. We present a 31-year examination of QF delivery from treatment (clearcut, selection harvest, and shelterwood harvest) and control catchments in a deciduous forest landscape in central Ontario, Canada. Growing season root-zone storage capacity was estimated using a water balance approach to evaluate temporal changes in QF response to precipitation (P) for pretreatment and posttreatment periods. Threshold relationships between QF and P were assessed for control and treatment catchments for pretreatment and posttreatment periods using piecewise regression. Root-zone storage capacity demarcated shifts in the hydrologic regime arising from forest harvesting and subsequent regeneration. This was particularly pronounced for clearcutting where postharvest decline in root-zone storage capacity was followed by a rise to preharvest values. Similar pretreatment threshold relationships between QF and P, and near-identical P thresholds for producing significant QF, reflected similar soil and overburden depths in the catchments. Harvesting effects were indicated by increases in QF/P ratios for relative small P and the number of P events that generated QF, thus changing treatment QF vs. P threshold relationships. Prior to harvesting there was no significant increase in QF with P below a threshold P of 35–45 mm; however, there was a significant QF vs. P relationship below this threshold for all treatments postharvest. Clearcutting increased the number of QF events for the entire postharvest period and the first 9-year postharvest compared to the other treatments; nevertheless, evidence for intertreatment differences in total QF depth delivered from the catchments during the growing season was inconclusive. Our work suggests that changes in threshold relationships between QF and P, coupled with knowledge of the physical processes underlying them, are useful when evaluating hydrologic responses to forest harvesting.

Cite

CITATION STYLE

APA

Buttle, J. M., Webster, K. L., Hazlett, P. W., & Jeffries, D. S. (2019). Quickflow response to forest harvesting and recovery in a northern hardwood forest landscape. Hydrological Processes, 33(1), 47–65. https://doi.org/10.1002/hyp.13310

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free