HIF-2α-pVHL complex reveals broad genotype-phenotype correlations in HIF-2α-driven disease

36Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

It is definitively established that mutations in transcription factor HIF-2α are causative of both neuroendocrine tumors (class 1 disease) and polycythemia (class 2 disease). However, the molecular mechanism that underlies this emergent genotype–phenotype relationship has remained unclear. Here, we report the structure of HIF-2α peptide bound to pVHL-elongin B-elongin C (VBC) heterotrimeric complex, which shows topographical demarcation of class 1 and 2 mutations affecting residues predicted, and demonstrated via biophysical analyses, to differentially impact HIF-2α-pVHL interaction interface stability. Concordantly, biochemical experiments showed that class 1 mutations disrupt pVHL affinity to HIF-2α more adversely than class 2 mutations directly or indirectly via impeding PHD2-mediated hydroxylation. These findings suggest that neuroendocrine tumor pathogenesis requires a higher HIF-2α dose than polycythemia, which requires only a mild increase in HIF-2α activity. These biophysical data reveal a structural basis that underlies, and can be used to predict de novo, broad genotype-phenotype correlations in HIF-2α-driven disease.

Cite

CITATION STYLE

APA

Tarade, D., Robinson, C. M., Lee, J. E., & Ohh, M. (2018). HIF-2α-pVHL complex reveals broad genotype-phenotype correlations in HIF-2α-driven disease. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-05554-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free