Novel Bioactive Nanocomposites Containing Calcium Fluoride and Calcium Phosphate with Antibacterial and Low-Shrinkage-Stress Capabilities to Inhibit Dental Caries

10Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

Objectives: Composites are commonly used for tooth restorations, but recurrent caries often lead to restoration failures due to polymerization shrinkage-stress-induced marginal leakage. The aims of this research were to: (1) develop novel low-shrinkage-stress (L.S.S.) nanocomposites containing dimethylaminododecyl methacrylate (DMADDM) with nanoparticles of calcium fluoride (nCaF2) or amorphous calcium phosphate (NACP) for remineralization; (2) investigate antibacterial and cytocompatibility properties. Methods: Nanocomposites were made by mixing triethylene glycol divinylbenzyl ether with urethane dimethacrylate containing 3% DMADDM, 20% nCaF2, and 20% NACP. Flexural strength, elastic modulus, antibacterial properties against Streptococcus mutans biofilms, and cytotoxicity against human gingival fibroblasts and dental pulp stem cells were tested. Results: Nanocomposites with DMADDM and nCaF2 or NACP had flexural strengths matching commercial composite control without bioactivity. The new nanocomposite provided potent antibacterial properties, reducing biofilm CFU by 6 logs, and reducing lactic acid synthesis and metabolic function of biofilms by 90%, compared to controls (p < 0.05). The new nanocomposites produced excellent cell viability matching commercial control (p > 0.05). Conclusions: Bioactive L.S.S. antibacterial nanocomposites with nCaF2 and NACP had excellent bioactivity without compromising mechanical and cytocompatible properties. The new nanocomposites are promising for a wide range of dental restorations by improving marginal integrity by reducing shrinkage stress, defending tooth structures, and minimizing cariogenic biofilms.

Cite

CITATION STYLE

APA

Alhussein, A., Alsahafi, R., Balhaddad, A. A., Mokeem, L., Schneider, A., Jabra-Rizk, M. A., … Xu, H. H. K. (2023). Novel Bioactive Nanocomposites Containing Calcium Fluoride and Calcium Phosphate with Antibacterial and Low-Shrinkage-Stress Capabilities to Inhibit Dental Caries. Bioengineering, 10(9). https://doi.org/10.3390/bioengineering10090991

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free