Sampling for global epidemic models and the topology of an International airport network

Citations of this article
Mendeley users who have this article in their library.


Mathematical models that describe the global spread of infectious diseases such as influenza, severe acute respiratory syndrome (SARS), and tuberculosis (TB) often consider a sample of international airports as a network supporting disease spread. However, there is no consensus on how many cities should be selected or on how to select those cities. Using airport flight data that commercial airlines reported to the Official Airline Guide (OAG) in 2000, we have examined the network characteristics of network samples obtained under different selection rules. In addition, we have examined different size samples based on largest flight volume and largest metropolitan populations. We have shown that although the bias in network characteristics increases with the reduction of the sample size, a relatively small number of areas that includes the largest airports, the largest cities, the most-connected cities, and the most central cities is enough to describe the dynamics of the global spread of influenza. The analysis suggests that a relatively small number of cities (around 200 or 300 out of almost 3000) can capture enough network information to adequately describe the global spread of a disease such as influenza. Weak traffic flows between small airports can contribute to noise and mask other means of spread such as the ground transportation. © 2008 Bobashev et al.




Bobashev, G., Morris, R. J., & Goedecke, M. (2008). Sampling for global epidemic models and the topology of an International airport network. PLoS ONE, 3(9).

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free