A snake-inspired path planning algorithm based on reinforcement learning and self-motion for hyper-redundant manipulators

7Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Redundant manipulators are flexible enough to adapt to complex environments, but their controller is also required to be specific for their extra degrees of freedom. Inspired by the morphology of snakes, we propose a path planning algorithm named Swinging Search and Crawling Control, which allows the snake-like redundant manipulators to explore in complex pipeline environments without collision. The proposed algorithm consists of the Swinging Search and the Crawling Control. In Swinging Search, a collision-free manipulator configuration that of the end-effector in the target point is found by applying reinforcement learning to self-motion, instead of designing joint motion. The self-motion narrows the search space to the null space, and the reinforcement learning makes the algorithm use the information of the environment, instead of blindly searching. Then in Crawling Control, the manipulator is controlled to crawl to the target point like a snake along the collision-free configuration. It only needs to search for a collision-free configuration for the manipulator, instead of searching collision-free configurations throughout the process of path planning. Simulation experiments show that the algorithm can complete path planning tasks of hyper-redundant manipulators in complex environments. The 16 degrees of freedom and 24 degrees of freedom manipulators can achieve 83.3% and 96.7% success rates in the pipe, respectively. In the concentric pipe, the 24 degrees of freedom manipulator has a success rate of 96.1%.

Cite

CITATION STYLE

APA

Lin, Y., Wang, J., Xiao, X., Qu, J., & Qin, F. (2022). A snake-inspired path planning algorithm based on reinforcement learning and self-motion for hyper-redundant manipulators. International Journal of Advanced Robotic Systems, 19(4). https://doi.org/10.1177/17298806221110022

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free