Energy efficiency (EE) maximization problem for Cognitive Underwater Acoustic Network is investigated in this study. Available works on EE usually assume that spectrum sensing is accurate or that channel state information (CSI) is perfect, which is often impractical. Thus, an adaptive resource allocation scheme is proposed to maximize the EE, subject to the transmission power constraint of secondary user (SU) and the interference power constraint of primary user (PU). By taking the spectrum sensing errors into account, we add power interference from PU to SU in the objective function. Besides, interference tolerance factor is introduced to control the interference from SU to PU. Assuming CSI uncertainties of the involved channels are bounded, they are separately modeled as stochastic-case or worst-case according to their nature. Since the established optimization problem is nonconvex, it is converted into a convex one and then solved by the techniques of fractional programming and dual decomposition. Simulation results validate that the EE can be improved by classifying the CSI uncertainties and solving the expectation of the CSI correlation function. Furthermore, the interference from SU to PU can be controlled well by the adjustment of the interference tolerance factor.
CITATION STYLE
Wu, Y., Li, Y., & Yao, Q. (2019). Adaptive energy efficiency maximization for cognitive underwater acoustic network under spectrum sensing errors and csi uncertainties. Wireless Communications and Mobile Computing, 2019. https://doi.org/10.1155/2019/2875136
Mendeley helps you to discover research relevant for your work.