The multifactorial nature of beak and skull shape evolution in parrots and cockatoos (Psittaciformes)

29Citations
Citations of this article
89Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: The Psittaciformes (parrots and cockatoos) are characterised by their large beaks, and are renowned for their ability to produce high bite forces. These birds also possess a suite of modifications to their cranial architecture interpreted to be adaptations for feeding on mechanically resistant foods, yet the relationship between cranial morphology and diet has never been explicitly tested. Here, we provide a three-dimensional geometric morphometric analysis of the developmental and biomechanical factors that may be influencing the evolution of psittaciformes' distinctive cranial morphologies. Results: Contrary to our own predictions, we find that dietary preferences for more- or less- mechanically resistant foods have very little influence on beak and skull shape, and that diet predicts only 2.4% of the shape variation in psittaciform beaks and skulls. Conversely, evolutionary allometry and integration together predict almost half the observed shape variation, with phylogeny remaining an important factor in shape identity throughout our analyses, particularly in separating cockatoos (Cacatuoidea) from the true parrots (Psittacoidea). Conclusions: Our results are similar to recent findings about the evolutionary trajectories of skull and beak shape in other avian families. We therefore propose that allometry and integration are important factors causing canalization of the avian head, and while diet clearly has an influence on beak shape between families, this may not be as important at driving evolvability within families as is commonly assumed.

Cite

CITATION STYLE

APA

Bright, J. A., Marugán-Lobón, J., Rayfield, E. J., & Cobb, S. N. (2019). The multifactorial nature of beak and skull shape evolution in parrots and cockatoos (Psittaciformes). BMC Evolutionary Biology, 19(1). https://doi.org/10.1186/s12862-019-1432-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free