In vitro cell interactions on pvdf films: Effects of surface morphology and polar phase transition

5Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

In recent years, several studies have validated the use of piezoelectric materials for in situ biological stimulation, opening new interesting insights for bio-electric therapies. In this work, we investigate the morphological properties of polyvinylidene fluoride (PVDF) in the form of microstructured films after temperature-driven phase transition. The work aims to investigate the correlations between morphology at micrometric (i.e., spherulite size) and sub-micrometric (i.e., phase crystallinity) scale and in vitro cell response to validate their use as bio-functional interfaces for cellular studies. Morphological analyses (SEM, AFM) enabled evidence of the peculiar spherulite-like structure and the dependence of surface properties (i.e., intra-/interdomain roughness) upon process conditions (i.e., temperature). Meanwhile, chemical (i.e., FTIR) and thermal (i.e., DSC) analyses highlighted an influence of casting temperature and polymer solution on apolar to polar phases transition, thus affecting in vitro cell response. Accordingly, in vitro tests confirmed the relationship between micro/sub-microstructural properties and hMSC response in terms of adhesion and viability, thus suggesting a promising use of PVDF films to model, in perspective, in vitro functionalities of cells under electrical stimuli upon mechanical solicitation.

Cite

CITATION STYLE

APA

Alvarez-Perez, M. A., Cirillo, V., Carbone, M. G. P., Pannico, M., Musto, P., & Guarino, V. (2021). In vitro cell interactions on pvdf films: Effects of surface morphology and polar phase transition. Materials, 14(18). https://doi.org/10.3390/ma14185232

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free