Abstract
Escherichia coli is an indicator micro-organism in One Health antibiotic resistance surveillance programs. The purpose of the study was to describe and compare E. coli isolates obtained from pigs and human contacts from a commercial farm in South Africa using conventional methods and whole-genome sequencing (WGS). Porcine E. coli isolates were proportionally more resistant phenotypically and harbored a richer diversity of antibiotic resistance genes as compared to human E. coli isolates. Different pathovars, namely ExPEC (12.43%, 21/169), ETEC (4.14%, 7/169), EPEC (2.96%, 5/169), EAEC (2.96%, 5/169) and STEC (1.18%, 2/169), were detected at low frequencies. Sequence type complex (STc) 10 was the most prevalent (85.51%, 59/169) among human and porcine isolates. Six STcs (STc10, STc86, STc168, STc206, STc278 and STc469) were shared at the human–livestock interface according to multilocus sequence typing (MLST). Core-genome MLST and hierarchical clustering (HC) showed that human and porcine isolates were overall genetically diverse, but some clustering at HC2–HC200 was observed. In conclusion, even though the isolates shared a spatiotemporal relationship, there were still differences in the virulence potential, antibiotic resistance profiles and cgMLST and HC according to the source of isolation.
Author supplied keywords
Cite
CITATION STYLE
Strasheim, W., Lowe, M., Smith, A. M., Etter, E. M. C., & Perovic, O. (2024). Whole-Genome Sequencing of Human and Porcine Escherichia coli Isolates on a Commercial Pig Farm in South Africa. Antibiotics, 13(6). https://doi.org/10.3390/antibiotics13060543
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.