β-Secretase-1: In Silico Drug Reposition for Alzheimer’s Disease

3Citations
Citations of this article
54Readers
Mendeley users who have this article in their library.

Abstract

The β-secretase-1 enzyme (BACE-1) performs a key role in the production of beta-Amyloid protein (Aβ), which is associated with the development of Alzheimer’s disease (AD). The inhibition of BACE-1 has been an important pharmacological strategy in the treatment of this neurodegenerative disease. This study aims to identify new potential candidates for the treatment of Alzheimer’s with the help of in silico studies, such as molecular docking and ADME prediction, from a broad list of candidates provided by the DrugBank database. From this analysis, 1145 drugs capable of interacting with the enzyme with a higher coupling energy than Verubecestat were obtained, subsequently only 83 presented higher coupling energy than EJ7. Applying the oral route of administration as inclusion criteria, only 41 candidates met this requirement; however, 6 of them are associated with diagnostic tests and not treatment, so 33 candidates were obtained. Finally, five candidates were identified as possible BACE-1 inhibitors drugs: Fluphenazine, Naratriptan, Bazedoxifene, Frovatriptan, and Raloxifene. These candidates exhibit pharmacophore-specific features, including the indole or thioindole group, and interactions with key amino acids in BACE-1. Overall, this study provides insights into the potential use of in silico methods for drug repurposing and identification of new candidates for the treatment of Alzheimer’s disease, especially those targeting BACE-1.

Cite

CITATION STYLE

APA

Galeana-Ascencio, R. A., Mendieta, L., Limon, D. I., Gnecco, D., Terán, J. L., Orea, M. L., & Carrasco-Carballo, A. (2023). β-Secretase-1: In Silico Drug Reposition for Alzheimer’s Disease. International Journal of Molecular Sciences, 24(9). https://doi.org/10.3390/ijms24098164

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free