Identifying Cover Songs Using Information-Theoretic Measures of Similarity

23Citations
Citations of this article
52Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This paper investigates methods for quantifying similarity between audio signals, specifically for the task of cover song detection. We consider an information-theoretic approach, where we compute pairwise measures of predictability between time series. We compare discrete-valued approaches operating on quantized audio features, to continuous-valued approaches. In the discrete case, we propose a method for computing the normalized compression distance, where we account for correlation between time series. In the continuous case, we propose to compute information-based measures of similarity as statistics of the prediction error between time series. We evaluate our methods on two cover song identification tasks using a data set comprised of 300 Jazz standards and using the Million Song Dataset. For both datasets, we observe that continuous-valued approaches outperform discrete-valued approaches. We consider approaches to estimating the normalized compression distance (NCD) based on string compression and prediction, where we observe that our proposed normalized compression distance with alignment (NCDA) improves average performance over NCD, for sequential compression algorithms. Finally, we demonstrate that continuous-valued distances may be combined to improve performance with respect to baseline approaches. Using a large-scale filter-and-refine approach, we demonstrate state-of-the-art performance for cover song identification using the Million Song Dataset.

Cite

CITATION STYLE

APA

Foster, P., Dixon, S., & Klapuri, A. (2015). Identifying Cover Songs Using Information-Theoretic Measures of Similarity. IEEE Transactions on Audio, Speech and Language Processing, 23(6), 993–1005. https://doi.org/10.1109/TASLP.2015.2416655

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free