Abstract
Energy consumers may not know whether their next-hour forecasted load is either high or low based on the actual value predicted from their historical data. A conventional method of level prediction with a pattern recognition approach was performed by first predicting the actual numerical values using typical pattern-based regression models, hen classifying them into pattern levels (e.g., low, average, and high). A proposed prediction with pattern recognition scheme was developed to directly predict the desired levels using simpler classifier models without undergoing regression. The proposed pattern recognition classifier was compared to its regression method using a similar algorithm applied to a real-world energy dataset. A random forest (RF) algorithm which outperformed other widely used machine learning (ML) techniques in previous research was used in both methods. Both schemes used similar parameters for training and testing simulations. After 10-time cross training validation and five averaged repeated runs with random permutation per data splitting, the proposed classifier shows better computation speed and higher classification accuracy than the conventional method. However, when the number of its desired levels increases, its prediction accuracy seems to decrease and approaches the accuracy of the conventional method. The developed energy level prediction, which is computationally inexpensive and has a good classification performance, can serve as an alternative forecasting scheme.
Author supplied keywords
Cite
CITATION STYLE
Chen, Y. T., Piedad, E., & Kuo, C. C. (2019). Energy consumption load forecasting using a level-based random forest classifier. Symmetry, 11(8). https://doi.org/10.3390/sym11080956
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.