Thrombotic distal middle cerebral artery occlusion produced by topical FeCl 3 application: A novel model suitable for intravital microscopy and thrombolysis studies

60Citations
Citations of this article
109Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Intravital or multiphoton microscopy and laser-speckle imaging have become popular because they allow live monitoring of several processes during cerebral ischemia. Available rodent models have limitations for these experiments; e.g., filament occlusion of the proximal middle cerebral artery (MCA) is difficult to perform under a microscope, whereas distal occlusion methods may damage the MCA and the peri-arterial cortex. We found that placement of a 10% FeCl 3-soaked filter paper strip (0.3 × 1 mm2) on the duramater over the trunk of the distal MCA through a cranial window for 3 minutes induced intraarterial thrombus without damaging the peri-arterial cortex in the mouse. This caused a rapid regional cerebral blood flow decrease within 10 minutes and total occlusion of the MCA segment under the filter paper in 172 minutes, which resulted in a typical cortical infarct of 274 mm 3 at 24 hours and moderate sensorimotor deficits. There was no significant hemispheric swelling or hemorrhage or mortality at 24 hours. Reperfusion was obtained in half of the mice with tissue plasminogen activator, which allowed live monitoring of clot lysis along with restoration of tissue perfusion and MCA flow. In conclusion, this relatively simple and noninvasive stroke model is easy to perform under a microscope, making it suitable for live imaging and thrombolysis studies. © 2011 ISCBFM All rights reserved.

Cite

CITATION STYLE

APA

Karatas, H., Erdener, S. E., Gursoy-Ozdemir, Y., Gurer, G., Soylemezoglu, F., Dunn, A. K., & Dalkara, T. (2011). Thrombotic distal middle cerebral artery occlusion produced by topical FeCl 3 application: A novel model suitable for intravital microscopy and thrombolysis studies. Journal of Cerebral Blood Flow and Metabolism, 31(6), 1452–1460. https://doi.org/10.1038/jcbfm.2011.8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free