Velocity Interferometer System for Any Reflector (VISAR) [Barker and Hollenbach, J. Appl. Phys. 43, 4669 (1972)] is a well-known diagnostic that is employed on many shock physics and pulsed-power experiments. With the VISAR diagnostic, the velocity on the surface of any metal flyer can be found. For most experiments employing VISAR, either a kinetic pressure [Grady, Mech. Mater. 29, 181 (1998)] or a magnetic pressure [Lemke et al., Intl J. Impact Eng. 38, 480 (2011)] drives the motion of the flyer. Moreover, reliable prediction of the time-dependent pressure is often a critical component to understanding the physics of these experiments. Although VISAR can provide a precise measurement of a flyer's surface velocity, the real challenge of this diagnostic implementation is using this velocity to unfold the time-dependent pressure. The purpose of this paper is to elucidate a new method for quickly and reliably unfolding VISAR data.
CITATION STYLE
Hess, M., Peterson, K., & Harvey-Thompson, A. (2015). An efficient method for unfolding kinetic pressure driven VISAR data. High Power Laser Science and Engineering, 3. https://doi.org/10.1017/hpl.2015.23
Mendeley helps you to discover research relevant for your work.