Quantitative analysis of phospholipids containing arachidonate and docosahexaenoate chains in microdissected regions of mouse brain

49Citations
Citations of this article
72Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Phospholipids containing polyunsaturated fatty acyl chains are prevalent among brain lipids, and regional differences in acyl chain distribution appear to have both functional and pathological significance. A method is described in which the combined application of GC and multiple reaction monitoring (MRM) MS yielded precise relative quantitation and approximate absolute quantitation of lipid species containing a particular fatty acyl chain in milligramsized tissue samples. The method uses targeted MRM to identify specific molecular species of glycerophosphocholine lipids, glycerophospho-ethanolamine lipids, glycerophosphoinositol lipids, glycerophosphoserine lipids, glycero- phosphoglycerol lipids, and phosphatidic acids that contain esterified arachidonate (AA) and docosahexaenoate (DHA) separated during normal phase LC/MS/MS analysis. Quantitative analysis of the AA and DHA in the LC fractions is carried out using negative ion chemical ionization GC/MS and stable isotope dilution strategies. The method has been applied to assess the glycerophospholipid molecular species containing AA and DHA in microdissected samples of murine cerebral cortex and hippocampus. Results demonstrate the potential of this approach to identify regional differences in phospholipid concentration and reveal differences in specific phospholipid species between cortex and hippocampus. These differences may be related to the differential susceptibility of different brain regions to neurodegenerative disorders. Copyright © 2010 by the American Society for Biochemistry and Molecular Biology, Inc.

Cite

CITATION STYLE

APA

Axelsen, P. H., & Murphy, R. C. (2010). Quantitative analysis of phospholipids containing arachidonate and docosahexaenoate chains in microdissected regions of mouse brain. Journal of Lipid Research, 51(3), 660–671. https://doi.org/10.1194/jlr.D001750

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free